Circadian phase resetting in response to light-dark and dark-light transitions.
نویسندگان
چکیده
Phase shifting of circadian systems by light has been attributed both to parametric effects on angular velocity elicited by a tonic response to the luminance level and to nonparametric instantaneous shifts induced by a phasic response to the dark-light (D>L) and light-dark (L>D) transitions. Claims of nonparametric responses are partly based on "step-PRCs," that is, phase response curves derived from such transitions. Step-PRCs in nocturnal mammals show mostly delays after lights-on and advances after lights-off, and therefore appear incompatible with phase delays generated by light around dusk and advances by light around dawn. We have pursued this paradox with 2 experimental protocols in mice. We first use the classic step-PRC protocol on wheel running activity, using the center of gravity as a phase marker to minimize the masking effects of light. The experiment was done for 3 different light intensities (1, 10, and 100 lux). D>L transitions evoke mostly delays and L>D transitions show no clear tendency to either delay or advance. Overall there is little or no circadian modulation. A 2nd protocol aimed to avoid the problem of masking by assessing phase before and after the light stimuli, both in DD. Light stimuli consisted of either a slow light intensity increase over 48 h followed by abruptly switching off the light, or an abrupt switch on followed by a slow decrease toward total darkness during 48 h. If the abrupt transitions were responsible for phase shifting, we expected large differences between the 2 stimuli. Both light stimuli yielded similar PRCs characterized by delays only with circadian modulation. The results can be adequately explained by a model in which all PRCs evoked by steps result in fact from tonic responses to the light following a step-up or preceding a step-down. In this model only the response reduction of tonic velocity change after the 1st hour is taken into account. The data obtained in both experiments are thus compatible with tonic velocity responses. Contrary to standard interpretation of step-PRCs, nonparametric responses to the transitions are unlikely since they would predict delays in response to lights-off, advances in response to lights-on, while the opposite was found. Although such responses cannot be fully excluded, parsimony does not require invocation of a role for transitions, since all the data can readily be explained by tonic velocity (parametric) effects, which must exist because of the dependence of tau on light intensity.
منابع مشابه
Effect of Eight Weeks of Endurance Training in Light and Dark Phases of Circadian Rhythm on the Oxidative Stress Index in Pancreas of Diabetic Mice
Introduction: Chronic hyperglycemia is associated with an increase in cellular damage due to oxidative stress in pancreatic tissue. The effect of exercise in different phases of the circadian cycle on protecting pancreatic tissue from oxidative stress in diabetic patients is unknown. The aim of this study was to investigate the effect of eight weeks of endurance training in light and dark phase...
متن کاملPhotoperiod differentially modulates photic and nonphotic phase response curves of hamsters.
Circadian pacemakers respond to light pulses with phase adjustments that allow for daily synchronization to 24-h light-dark cycles. In Syrian hamsters, Mesocricetus auratus, light-induced phase shifts are larger after entrainment to short daylengths (e.g., 10 h light:14 h dark) vs. long daylengths (e.g., 14 h light:10 h dark). The present study assessed whether photoperiodic modulation of phase...
متن کاملResetting of the hamster circadian system by dark pulses.
Circadian rhythms of animals are reset by exposure to light as well as dark; however, although the parameters of photic entrainment are well characterized, the phase-shifting actions of dark pulses are poorly understood. Here, we determined the tonic and phasic effects of short (0.25 h), moderate (3 h), and long (6-9 h) duration dark pulses on the wheel-running rhythms of hamsters in constant l...
متن کاملA novel mutation in kaiC affects resetting of the cyanobacterial circadian clock.
Light is the most important factor controlling circadian systems in response to day-night cycles. In order to better understand the regulation of circadian rhythms by light in Synechococcus elongatus PCC 7942, we screened for mutants with defective phase shifting in response to dark pulses. Using a 5-h dark-pulse protocol, we identified a mutation in kaiC that we termed pr1, for phase response ...
متن کاملEffect of Time of Aerobic Exercise in the Light-dark Cycle on Glycemic Control, SIRT1 Protein Expression, and NAD+/NADH Ratio in Skeletal Muscle of Type 2 Diabetes Model Mice
Introduction: Mitochondrial function is regulated by the dark-light cycle under physiological and pathological conditions. Time-dependent exercise interventions may affect metabolic health in diabetic patients by regulating hyperglycemia. However, limited data are available about the correlation between the time of exercise and the regulation of muscle circadian rhythm in diabetes conditions. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biological rhythms
دوره 23 5 شماره
صفحات -
تاریخ انتشار 2008